二次函数的应用教学反思

二次函数的应用教学反思 | 楼主 | 2017-12-20 20:11:40 共有3个回复
  1. 1二次函数的应用教学反思
  2. 2二次函数的应用教学反思
  3. 3人教版九年级数学《二次函数的应用》教学反思二

为学生提供思考的空间注重一题多解,二次函数是中学数学的重要内容也是中考的热点。

二次函数的应用教学反思2017-12-20 20:09:15 | #1楼回目录

教学反思

——二次函数的应用

王忠山九年级数学

二次函数的应用是学习二次函数的图像与性质后,检验学生应用所学知识解决实际问题能力的一个综合考查,它是本章的难点。新的课程标准要求学生能通过对实际问题的情境的分析确定二次函数的表达式,体会其意义,能根据图像的性质解决简单的实际问题,而最大值问题是生活中利用二次函数知识解决最常见、最有实际应用价值的问题,它生活背景丰富,学生比较感兴趣。本节课通过学习求水流的最高点问题,引导学生将实际问题转化为数学模型,利用数学建模的思想去解决和函数有关的应用问题。此部分内容是学习一次函数及其应用后的巩固与延伸,又为高中乃至以后学习更多函数打下坚实的基矗

由于本节课是二次函数的应用问题,重在通过学习总结解决问题的方法,故而本节课以“启发探究式”为主线开展教学活动,以学生动手动脑探究为主,必要时加以小组合作讨论,充分调动学生学习积极性和主动性,突出学生的主体地位,达到“不但使学生学会,而且使学生会学”的目的。二次函数应用的教学后,比我预想的效果要好一些,出现了几个点引人深思:

1、精心设计问题,引发学生思考建立数模

在《二次函数的应用》的教学过程中,复习旧知后,主要安排了一道例3—水流最高点问题 :人工喷泉有一个竖直的喷水枪AB,喷水口A距地面2m,喷水水流的轨迹是抛物线。如果要求水流的最高点P到喷水枪AB所在直线的距离为1m,且水流的着地点C距离水枪底部B的距离为2.5m,那么,水流的最高点距离地面是多少米? 以此题为契机,培养学生的分析问题、解决问题的能力。本节课重点放在分析问题,将实际问题转化为数学问题,建立数学模型解决问题。所以在教学时,教师应有意锻炼学生从读题开始,分析题意,搜索与问题有联系的数学知识,运用知识和技能使问题获得解决。在备课中,我发现学生对例题的理解存在困难,采用设计小问题,铺设小台阶,引导学生探究,突破教学难点,带领学生寻找解决的方法。我设计的问题如下:

(1)读题,检索有用信息;

(2)分析已知,他们讲的是什么含义? 根据题意画出图形;

(3)分析所求,是让我们求什么?将实际问题可转化为什么知识来解决?

(4)如何求二次函数的最大值?

学生根据老师提出的问题,小组讨论,同学间互相交流与补充,在教师的引领下,发现本题就是转化为求二次函数的最大值问题,逐步将难点突破,帮助学生建立数模解决问题。学生在动手画图、讨论的基础上找到解决的方法与步骤,先求二次函数的解析式,再求二次函数的最大值。学生在理解题意后画图形,又加深了对题目的理解,为解决问题奠定了基础,进一步体会运用数形结合的思想方法求解二次函数的问题,将数学思想与方法渗透到整个教学过程中。

2为学生提供思考的空间,注重一题多解

学生在建立平面直角坐标系后,根据题意知道 ,对称轴是x=1,A点坐标(0,2),B点坐标(0,0),C点坐标(0,2),确定二次函数解析式时,出现了一个小插曲。学生用一般式确定二次函数解式后,有同学想用其他的方法求解想法,我马上鼓励学生去寻找新的方法。四班学生思维活跃,有个学生想用两根式求解析式,让这个学生说出自己的思路,其他学生帮助他进行分析与补充。该同学将A、B、C三点坐标带入两根式求解,发现求得解析式与用一般式求得解析式不同,很疑惑,不知道问题出在哪里?我并没有否定该同学的方法,而是让其他学生帮助纠正,在大家的分析图形中发现,B点坐标不在抛物线上,不能将其带入。在教学中出现分歧时,要给学生空间去思考,发现问题的原因,从而确定解决得方法,避免今后出现类似错误。而六班学生善于思考,在用两根式求解析式时,我设计一个小陷阱,故意引导学生选用A、B、C三点求解析式,学生通过计算与观察,同样发现了这个问题:B点坐标不在抛物线上,不能将其带入求解。在这种情景下,追问:如何利用两根式确定解析式呢?学生积极性很高,小组讨论,学生根据抛物线的对称性找到它与x轴另一个交点D(-0.5,0),将A、

D、C三点带入可求出二次函数的解析式。在教学中,要注重解题方法的灵活性,一题多解,开阔学生的思维,提高学生的发现问题,解决问题的能力。在教学过程中,层层设疑,激发学生求知欲,积极主动参与教学活动,大大提高了课堂效率。

3、数学来源于生活并运用于生活

例题3有较强的现实感,例题的选择增加数学教学的现实性,使学生体验数学知识与日常生活的密切联系,从而培养学生喜爱数学,学好数学的情感。课堂中,学生在解决数学情境问题的过程中,感悟数学来源于生活并运用于生活,激发学生学习数学的兴趣。在课上,学生因问题来自于身边而思维活跃,有强烈的探索欲望,这样才能充分发挥学生学习的积极性,进而提高课堂教学质量。

4、不足之处

《数学课程标准》提出:教师不仅是学生的引导者,也是学生的合作者。教学中,要让学生通过自主讨论、交流,来探究学习中碰到的问题、难题,教师从中点拨、引导,并和学生一起学习探讨。在本节课的教学中,教师引导学生较多,没有完全放开让学生自主探究学习,获得新知;学生在数学学习中还是有较强的依赖性,教师要有意培养学生自主学习的能力。

教师要想在开放的课堂上具有灵活驾驭的能力,就需要在备课时尽量考虑周到,既要备教材,又要备学生,更需要教师具有丰富的科学文化知识,这样才能使我们的学生在轻松活跃的课堂上找到学习的乐趣与兴趣。

二次函数的应用教学反思2017-12-20 20:09:46 | #2楼回目录

本节课的教学目标是:继续经历利用二次函数解决实际最值问题;会综合运用二次函数和其他数学知识解决如有关距离、利润等的函数最值问题;发展应用数学解决问题的能力,体会数学与生活的密切联系和数学的应用价值。

本节课只有两个例题,第一个例题是有关距离问题,第二个例题是有关利润的问题。原计划本节课用一节课的时间,但是在实际操作过程中,第一个例题就用了一节课的时间,所以本节课要用两个课时来上。首先是复习了函数的应用,问学生经过前面对二次函数学习,给他们留下最深刻的是什么?学生马上能想到二次此文转自斐.斐课件.园 http://baogao.oh100.com 函数的最值,然后引导学生利用二次函数求只值问题应该注意的事项。1、根据实际问题求出函数解析式,求出自变良取值范围;2、把解析式化成配方式,或者把利用公式来求出函数的顶点坐标。3、检查顶点的横坐标是否在自变量的取值范围内。

举例有最大值还是最小值,什么时候能取到最大或者最小值?变化例子是否有最大或者最小值,什么时候取到最大或者最小值?这样做一方面巩固了最大值的取法,而且还为距离的最值问题做好铺垫。

例题的教学采取多媒体展示,根据提供的信息化出图形,引导学生观察,求距离可以根据勾股定理列出代数式。代数式是,问题转化为怎样求这个代数式的最小值。学生很自然想到,要使代数式的值最小,也就是被开方数要最小,也就想到转化为配方形式;解法二,利用公式求出。

对于第二个例题,引入的时候先回顾有关列利润的一元二次方程问题,经过市场调查,某种商品的进价为为每件6元,专卖店的每日固定成本为150元.当销售价为每件10元时,日均销售量为100件,单价每将低1元,日均销售量增加40件.要使利润500元,销售价应该定多少?

这样做就为利润问题列出函数解析式奠定了基础,主要的难点是从表格中提供的信息,总结出单价每增加一元,日均销售良就减少40瓶。根据这一规律,就不难列出y关于x的函数解析式。

引导学生思考,你认为商家要追求最大利润,销售价格是定的越低越好还是越高越好?让学生再次体会数学与生活的的密切联系和数学的应用价值。

人教版九年级数学《二次函数的应用》教学反思二2017-12-20 20:09:24 | #3楼回目录

二次函数是中学数学的重要内容,也是中考的热点。其中考试涉及的主要有考查二次函数的定义、图象与性质及应用等。

二次函数应用题型一般情况下,解题思路不外乎建立平面直角坐标系,标出图象上的点的坐标,求图象解析式,利用图象解析式及性质,来解决最优化等实际问题。二次函数的三种不同形式的解析式,即一般式、顶点式、交点式,熟练它们各自的性质如抛物线的开口方向,对称轴,顶点坐标,最大最小值,函数在对称轴两侧的增减性。老师要从学生的实际出发,了解学生的学习状况,善于启发和引导,才能较好的达到教学目标。

回复帖子
标题:
内容:
相关话题