配方法解一元二次方程教学反思

配方法解一元二次方程教学反思 | 楼主 | 2017-09-11 22:32:14 共有3个回复
  1. 1配方法解一元二次方程教学反思
  2. 2配方法解一元二次方程教学反思
  3. 3用配方法解一元二次方程的教学反思

配方法解一元二次方程教学反思,配方法解一元二次方程教学反思,用配方法解一元二次方程的教学反思。

配方法解一元二次方程教学反思2017-09-11 22:30:30 | #1楼回目录

《配方法解一元二次方程》教学反思

黄月

终于是第二次拿着自己准备的课件再次走上了期许已久的三尺讲台。周二的第五节课虽然只有短短是35分钟,但是这却是自我感觉最好的一堂课——《配方法讲一元二次方程》。这是一元二次方程解法的第二课时,其实总的内容并不是很多,而且对于初中课堂来说课堂的重点是老师的讲解和学生的练习要相互结合,最好能让学生在完成自学检测的过程中总结出方法,熟练用配方法解一元二次方程的一般步骤。尽可能让同学在经历配方法的探索中培养学生的动手解决问题的能力,理解解方程中的程序化,体会化归思想。在整节课的实际和进行的过程中,我比较满意的是以下几个方面:

一、这节课基本是按“1:1有效教学模式”来进行的;在时间方面,这节课保证了学生有足够的时间进行练习。自从我观摩了西南大学附属中学的翻转课堂以来,从这里面得到了一个道理:只有放心彻底把时间还给学生,学生的自主能动性才能得到充分的发展。因为学习始终是学生自主的行为,如果学生的自主性得不到发展,学生一直是被动地学习,他们不积极,老师在课堂上很累。但在这节课中重点是学生练习,总结方法和规律;很多东西虽然掌握的层次不同,但都是他们真正掌握的知识。

二、课时内容中对用配方法解一元二次方程的一般步骤总结的比较到位,学生在解题时,PPT上的例题解题过程都会保留在屏幕上,所以可以

很好地对照,使他们感觉解决这样的问题是很容易的。从二次项系数是1的类型过度到二次项系数是2的方程求解,运用矛盾激发学生思考遇到二次项系数是2的方程要先将二次项系数化1。

但是通过这节课,我也发现了我在课堂教学中的一切不足,例如,面对学生,我的教学语言中存在很多问题,题目设计不但要精,还要具有针对性,让学生不做无用功,而又要把所有的知识点通过题目深刻理解。

一节课或几节课或许对我的教学没有多大的帮助,但是只要我能够在教学中不断的摸索,不断地寻找不足,改进不足,我相信一切都会不断变好的。感恩!

配方法解一元二次方程教学反思2017-09-11 22:29:19 | #2楼回目录

配方法解一元二次方程教学反思

在教学过程中,我本着由简单到复杂,由特殊到一般的原则,采用了观察对比,合作探究等不同的学习方式,充分发挥学生的主体作用,让学生主动探究发现结论,教师做学生学习的引导者,合作者,促进者,在遇到自己的思路与课本上思路不同时,形成思维上的冲击,通过两个不同的例子,让学生从心里接受课本上思路简单而不容易出错,而不是把课本上的思路强加于学生。另外还要适时鼓励学生,实现师生互动。同时,我认识到教师不仅仅要教给学生知识,更要在教学中渗透数学中的思想方法,培养学生良好的数学素养和学习能力,让学生学会学习。

在教学中最关键的是让学生掌握配方,配方的对象是含有未知数的二次三项式,其理论依据是完全平方式,配方的方法是通过添项:加上一次项系数一半的平方构成完全平方式,对学生来说,要理解和掌握它,确实感到困难,因此在教学过程中及课后批改中发现学生出现以下几个问题:

1.在利用添项来使等式左边配成一个完全平方公式时,等式的右边忘了加。

2.在开平方这一步骤中,学生要么只有正、没有负的,要么右边忘了开方。

3.当一元二次方程有二次项的系数不为1时,在添项这一步骤时,没有将系数化为1,就直接加上一次项系数一半的平方。

因此,要纠正以上错误,必须让学生多做练习、上台表演、当场讲评,才能熟练掌握。

用配方法解一元二次方程的教学反思2017-09-11 22:29:50 | #3楼回目录

用配方法解一元二次方程的教学反思

配方法不仅是解一元二次方程的方法之一既是对前面知识的复习也是其它许多数学问题的一种数学思想方法,其发挥的作用和意义十分重要。

本节课大部分学生能够了解配方法的概念,知道运用配方法解一元二次方程的步骤.但是利用配方法解一元二次方程需要下功夫,多练习,多巩固。在教学中最关键的是让学生掌握配方,配方的对象是含有未知数的二次三项式,其理论依据是完全平方式,配方的方法是通过添项:加上一次项系数一半的平方构成完全平方式,对学生来说,要理解和掌握它,确实感到困难,因此在教学过程中课后批改中发现学生出现以下几个问题:

1.在利用添项来使等式左边配成一个完全平方公式时,等式的右边忘了加。

2.在开平方这一步骤中,学生要么只有正、没有负的,要么右边忘了开方。

3.当一元二次方程有二次项的系数不为1时,在添项这一步骤时,没有将系数化为1,就直接加上一次项系数一半的平方。

回复帖子
标题:
内容:
相关话题