《分数与分数相乘》教学反思

《分数与分数相乘》教学反思 | 楼主 | 2017-09-10 02:32:45 共有3个回复
  1. 1《分数与分数相乘》教学反思
  2. 2《分数乘分数》教学案例与反思
  3. 3《分数与整数相乘》教学反思

生两人共吃了这个西瓜每人吃这的西瓜的,学生自己写出一些分数乘分数的算式并汇报呈现到黑板上,生同分子的分为一类另外的一类,一探究几分之一乘几分之一的算法,生我是这样算的分母相乘分子不动。

《分数与分数相乘》教学反思2017-09-10 02:30:07 | #1楼回目录

《分数乘分数》教学案例与反思2017-09-10 02:32:04 | #2楼回目录

《分数乘分数》教学案例与反思

[教学实录]

一、情境引入:

师:小明与小强是好朋友,他请小强到家里做客,请小强吃西瓜,先切了一半留给自己的父母,两人吃的各占了西瓜一半的一半,问小明吃了整个西瓜几分之几?

生1:两人都吃了这个西瓜

生2:两人共吃了这个西瓜,每人吃这的西瓜的×=

师:他用了一个乘法算式来表示(板书算式),大家观察一下这个算式与原来我们学的乘法算式有什么不一样?

生:这个算式是分数乘分数,以前我们学的是整数乘分数。

师:你们也能写出一些分数乘分数的算式吗?

学生自己写出一些分数乘分数的算式并汇报呈现到黑板上。

×××

×××

×(老师也来写一个)

............

二、探索算法:

师:观察所有的乘法算式,分一分类:

生1:假分数与假分数分一类,真分数一类

生2:同分母分数相乘的为一类,另外的一类

生3:同分子的分为一类,另外的一类

生4:分子是一的为一类,分子不是一的一类

生5:我认为×也可以看成分子是一的这一类,因为可以约分成

师:今天我们研究问题时就用刚才这位同学的分法,即分子是一的为一类。

(一)探究几分之一乘几分之一的算法

1、请学生挑几道几分之一乘几分之一乘法算式,尝试计算。

2、汇报计算情况,提出计算方法。

生1:×=,我是这样算的,分母相乘,分子不动。

生2:我选的也是这题,两乘数的分母,分子各自乘就可以了。

师:你是怎么知道的?

生1:预习后知道的。

生2:我算的是×,结果是

,我是根据刚才小强吃西瓜的题来想的,先把西瓜平均分成5份,有6个人一共吃了其中的一份,就是把这一份再平均分成6份,一共把西瓜分成了30份,他们每人吃了其中的

师:有很多同学都确信,几分之一乘几分之一只要分母相乘作分母,分子不变或相乘,你能不能想办法难验证或说明它是正确的?

3、学生举例说明或验证计算方法及结果。

4、每人有了验证或说明的方法后,小组内交流验证情况。

5、组际交流

组1(要求两人来汇报):我们验证的是×=,因为=1÷3,那么×=(1÷3)×(1÷3)=1÷9=

也可以把一张纸平均分成3份

,再把其中的一份再平均分成3份取其中的一份,这样一共把这张纸平均分成了9份,取了其中的一份,所以是。

师:这种方法你听懂了吗?这个9是怎么来的?

生1:按他的想法来说,是折出来的,先平均分成3份,再把其中的一份再平均分成3份,实际上是把这长方形分成了9份。

组2(边说边画):我们用的是线段的方法,画一条线段作为单位1,把它平均分成3份,取其中一份,再把这一份平均分成3份取一份,就是把这条线段平均分成了9份,取了其中的一份。

组3:我们证明的是×=,=0.5,=0.25,0.5×0.25=0.125=

组4(教师要帮助学生在黑板上书,学生说:"我自己来吧!"于是他边写边说):我们小组验证的是×=,=1÷30,=1÷5,÷

=(1÷30)÷(1÷5)=1÷30÷1×5=1÷6=

师:现在我们已经有这么多方法来验证几分之一乘几分之一的计算方法,我们能不能确信刚才我们的猜想?(能)那几分之一乘几分之一可以这样算,那么另外的一些分数的乘法是怎么算的呢?

生:我认为也可以和刚才一样,分母相乘作分母,分子相乘作分子。

师:你确信吗?能你不能也举一些例子来验证一下。

汇报:

生1(边画图边解释):我验证的是×=,先把单位1平均分成3份,取中的两份,再把这两份作为单位1,平均分成2份,取其中的一份,结果是

就是。

生2:我验证的是×根据猜想是=,我们知道×=××9×5=×45==

,我还发现了两个分数相乘,两个分数中的分数与分母如果可以约分的话,就可以在计算过程中进行约分,会使计算方便。

师:×=××9×5,为什么可以这样算,根据是什么?

生:里有9个,里有5个,所以可以这样算。

生3:我验证的是,

=师:这是利用了什么?

生:乘法的分配律。

生4:我验证的是=,表示的是多少,那么=÷6×3=

师:我们有这么多办法,足够证明计算的方法,而且我们还发现,再计算过程中的能约分的先约分计算会更方便。

师:学到这里,谁能来总结一下。

生1:分数相乘时,能约分的可以先约分。

生2:分数乘分数,分母相乘作积的分母,分子相乘作积分子。

师:以前我们还学过那些有关分数的乘法?(整数乘分数,分数乘整数)这些乘法有什么共同点?

生:都可以用刚才我们得到的法则来计算。就算是整数乘分数也是这样。象5×可以看成是×=-

师:说得很好,

凡是有分数的乘法,我们都可以用今天我们所学的法则进行计算。

回忆一下整节课,你还记得我们是怎样得到分数乘分数的计算的法则的?

生:我们先猜想分数乘分数的计算方法,再举例子用了很多方法不验证或说明我们的猜想,最后得到了结论。

师:对,"猜想--举例验证--得到结论",是我们学习数学很有效的方法,在以后的学习中,同学们就可以用这样的思路去学习我们的数学。

教学反思:

1、给学生自主,学生的创造力将不可限量。

苏联教育家苏霍姆林斯基说:"在人的内心深处,都有一种根深蒂固的需要,就是希望感到自己是一个发现者、研究者、探索者,而在儿童的精神世界中这种需要特别强烈。"上了这一课让我更深刻的理解了这句话。学习是学生自己的事,把探究的权力真正还给学生后,学生的表现会让你大吃一惊。在不同班级的几次上课,都有不同的验证和说明的方法出现,这些方法远远超出教师课前的预设。上课前我们预计学生的验证方法不外乎:"化成小数"、"折纸和画图"、"分数的意义"这三种情况,而我们的孩子却又想出:"分数与除法的关系"、"用除法验证乘法"、"乘法的分配律"等各种超乎想象但又非常合理的方法。究其原因,就是学习变成了自己的事,学的更主动,潜能发挥到了极至。

2、自主探究活动中的新型师生关系

在探究性学习中,学生变得更有主动,活动的空间更大,有很多时间走出了教师监控的范围。因此教师与学生的角色都要转变,教师在活动中的主要任务是:呈现主题,协调建议,帮助指导。学生是学习的主体,发现问题,小组合作,协同研究,都由学生自主完成。教师大部分时间是以参与探索者的身份出现,与孩子们一起研究,师生之间建立起平等、和谐、民主伙伴关系。只有当学生遇到困难难以克服时,教师才以指导帮助者的身份出现。于是在我们的课堂中学生会大胆的向老师说:"老师,我自己来。""老师,在我需要时再给我帮助。"

3、一个两难问题:让学生充分体验还是落实基础知识?整节课的大部分时间都是学生的探索、讨论活动:先让学生从情境问题,在解决现实问题的同时为后面的研究提供讨论的素材,有了研究素材后抽象出数学问题,让孩子们继续研究讨论提出猜想,最后在举例检验猜想后形成共识,得到分数乘分数的计算法则,理解算理,由于学生的自主探索,化费了大量时间,最后整节课没有进行法则的应用练习,只是对本课进行了总结。从时间的分配上来说,后面的巩固

固与练习时间几乎没有,孩子们对分数乘分数的计算到底做的怎样我们并不了解,按常规本节课并没有完成教学计划(在教案的后面还有一些练习未完成),这一现象不仅使我想到:现在的课中更注重的是怎样让孩子们参与学习的过程,如何让孩子们在探索中学习,很少考虑知识点是否落实,怎样去落实。我们是让孩子们停下探究的脚部参与练习,这恐怕不合适,我们是让孩子们不停的去探究,而不管知识落实情况,可以也不恰当,那我们该怎么办?!

4、是否创设情境,如何情境创设?关于课的一开始是否要创设情境,在本课的试教过程中几易其稿,分数乘分数这一内容,在生活中很难找到原型,要创设一个恰当的情境并不容易。于是我们产生了两种引入课的思路,其一是开门见山式,一上课就出示课题《分数乘分数》,让学生写出一些分数乘分数的算式,说一说它们表示的意义,再进行分类......;第二种方案是像实录中的一样,先创设情境,让学生列出一个分数乘分数的乘法算式,再让学生写出各种分数乘法算式,然后进行分类探究......采取第一种方案,学生在探究时显然是少了一种思考的依托,对分数乘分数就是求几分之几的几分之几这一意义理解的不够,因此在验证中,大部分学生只能对结果是否正确进行举例验证,而对算理的说明是不够的,于是用折纸、画图进行验证的学生了了无几,孩子们对分数乘法计算法则的算理的理解普遍感到有困难。采用情境后,学生的思考好象有了基础,在验证时,学生自然而然的想到了分西瓜,并迅速类比到折纸、画图。在实录中学生就有这样的表现(生:我算的是

×,结果是

,我是根据刚才小强吃西瓜的题来想的,先把西瓜平均分成5份,有6个人一共吃了其中的一份,就是把这一份再平均分成6份,一共把西瓜分成了30份,他们每人吃了其中的

。),这一情境显然成了孩子们思考的拐杖,让他们在探究中更好的理解了分数乘分数的算法和算理。从中也使我们体会到情境创设的重要性。

《分数与整数相乘》教学反思2017-09-10 02:32:23 | #3楼回目录

《分数与整数相乘》教学反思

丹阳市里庄中心小学葛文娟

这节课,我教学的内容是:苏教版小学数学11册第三单元《分数与整数相乘》的第一课时。设计意图:由生活中的问题情景引发计算需求,培养学生运用已有知识和经验迁移、类推、自主探索并解决实际问题的意识,体验探索学习的乐趣。根据这一思路我设计了4个教学环节:一情境导入,理解意义、二自主探究,明白算理、三巩固练习,形成技能、四课堂总结,延伸课外。本节课,我自己比较满意的地方有以下三点:

1、重视创设情境,理解意义。

让学生从现实生活中学习数学。本课我创设了同学为迎接国庆节做绸花的实际情境,引导学生根据实际问题的数量关系,列出算式。求三个相同加数的和,可以用加法和乘法列式。这样处理,既有利于学生主动地把整数乘法的意义推广到分数中来,即分数和整数相乘的意义与整数乘法的意义相同,都是求几个相同加数的简便运算,又可以启发学生用加法算出3/10×3的结果。

2、重视直观教学,让学生在操作实践中学习数学导入新课时,我主要采用,引导学生涂色表示3个3/10米,目的是让学生认识到求3个3/10可以用加法计算,也可以用乘法计算,再借助所列的加法算式初步理解分数与整数相乘的意义,并为引导学生探索分数与整数相乘的计算方法进行了知识结构上的铺垫。

3、尝试计算。自主探究新知,理解算理。

借助同分母分数加法,自主探索分数和整数相乘的计算方法。由于分数和整数相乘可以转化成几个相同加数连加的算式,因此,例1放手让学生尝试计算,着重让学生说一说计算的思考过程。

4、练习设计具有针对性,多样性,激励性,生活性。在本环节学生的技能得到了巩固和提升,特别是两个常见的改错题引发学生自我反思、自我完善计算方法,已达到算法的自主优化。

存在不足:

1、涂色表示3个3/10米处,由于学生速度慢费时较多;在学生探究3/10×3的算理时的引导还不够简约有效,使本课有前松后紧之弊。2、对学生约分的格式和规范方面的要求不够,不利于养成良好的计算习惯。教学真的是件憾事,细细反思起来,总有需要改进的东西。今后,我一定要注意这些小细节,争取把课上得更好。

回复帖子
标题:
内容:
相关话题