一元二次方程的教学设计及反思69

一元二次方程的教学设计及反思69 | 楼主 | 2017-09-07 14:33:34 共有3个回复
  1. 1一元二次方程的教学设计及反思69
  2. 2公式法解一元二次方程的教学设计及反思
  3. 3公式法解一元二次方程的教学设计及反思

一元二次方程的教学设计及反思教学目标,参赛的每两个队之间都要比赛一场是什么意思,类比一元一次方程的根的概念获得一元二次方程的根的概念,思考一元一次方程一定有一个根一元二次方程呢。

一元二次方程的教学设计及反思692017-09-07 14:33:09 | #1楼回目录

一元二次方程的教学设计及反思教学目标:

知识技能

1.解一元二次方程概念是以未知数的个数和次数为标准的.

2.掌握一元二次方程的一般形式以及三种特殊形式,能将一个一元二次方程化为一般形式

3.理解二次根式的根的概念,会判断一个数是否是一个一元二次方程的根

过程方法

1.通过根据实际问题列方程,向学生渗透知识来源于生活.

2.通过观察,思考,交流,获得一元二次方程的概念及其一般形式和其它三种特殊形式.

3.经历观察,归纳一元二次方程的概念,一元二次方程的根的概念,情感态度

通过生活学习数学,并用数学解决生活中的问题来激发学生的学习热情.

教学重点:

一元二次方程的概念,一般形式和一元二次方程的根的概念教学难点:

通过提出问题,建立一元二次方程的数学模型,再由一元一次方程的概念迁移到一元二次方程的概念

教学过程:

一、复习引入

导语:小学五年级学习过简易方程,上初中后学习了一元一次方程,二元一次方程组,可化为一元一次方程的分式方程,运用方程方法可以解决众多代数问题和几何求值问题,是非常常见的一种数学方法。从这节课开始学习一元二次方程知识.先来学习一元二次方程的有关概念.

二、探究新知

探究课本问题2

分析:

1.参赛的每两个队之间都要比赛一场是什么意思?

2.全部比赛场数是多少?若设应邀请x个队参赛,如何用含x的代数式表示全部比赛场数?

整理所列方程后观察:

1.方程中未知数的个数和次数各是多少?

2.下列方程中和上题的方程有共同特点的方程有哪些?(见课本)概念归纳:

1.一元二次方程定义:

分析:首先它是整式方程,然后未知数的个数是1,最高次数是2.

2.一元二次方程的一般形式:

分析:

(1)为什么规定a≠0?

(2)方程左边各项之间的运算关系是什么?关于x的一元二次方程的各项分别是什么?各项系数是什么?

3.特殊形式

课本例题

分析:类比一元一次方程的去括号,移项,合并同类项,进行同解变形,化为一般形式后再写出各项系数,注意方程一般形式中的“-”是性质符号负号,不是运算符号减号.

一元二次方程的根的概念

1.类比一元一次方程的根的概念获得一元二次方程的根的概念

2.下面哪些数是方程x2+5x+6=0的根?

-4,-3,-2,-1,0,1,2,3,4.

3.你能用以前所学的知识求出下列方程的根吗?

(1)x2-64=0(2)x2+1=0(3)x2-3x=0

4.思考:一元一次方程一定有一个根,一元二次方程呢?

5.排球邀请赛问题中,所列方程的根是8和-7,但是答案只能有一个,应该是哪个?

归纳:

(1)一元二次方程的根的情况

(2)一元二次方程的解要满足实际问题

三、课堂训练

1.课本练习

2补充:

1).在下列方程中,一元二次方程的个数是().

①3x2+7=0②ax2+bx+c=0③(x-2)(x+5)=x2-1④3x2-=0

A.1个B.2个C.3个D.4个

2).关于x的方程(a-1)x2+3x=0是一元二次方程,则a范围________.

3).已知方程5x2+mx-6=0的一个根是x=3,则m的值为________

4).关于x的方程(2m2+m)xm+1+3x=6可能是一元二次方程吗?

四、小结归纳

1.一元二次方程的概念及其一般形式,能将一个一元二次方程化为一般形式,并正确指出其各项系数.

2.一元二次方程的根的概念,能判断一个数是否是一个一元二次方程的根.

五、作业设计

复习巩固作业和综合运用为全体学生必做;

拓广探索为成绩中上等学生必做;

学有余力的学生,要求模仿编拟课堂上出现的一些补充题目进行重练习.

一元二次方程教学反思

对于一元二次方程,学生在前面已经学习过一元一次方程、二元一次方程和分式方程的知识,也是以后学习二次函数的基矗是初中教材中一个重要的内容,通过这节课的教学我有如下几点体会:

一、教学之前的思考

基于教材的特点,我把重心放在关注学生的学法上。通过分析本章的难点和所教班的实际情况,我认为教学的难点在于如何理顺配方法、公式法、分解因式法之间的关系以及如何利用一元二次方程解应用题。

二、实施教学所遇到的难点

在把握了本章的重难点之后,我把教学中心放在解一元二次方程的三种方法之间的联系上。在实际的教学过程中,学生虽然已经清楚三种方法之间的内在联系,但同时也存在以下两方面的问题:第一、基本运算不过关。绝大多数同学都知道解方程的方法,但却不能保证计算的准确性。这里也透露出新教材的一个特点:很重视学生思维上的培养,却忽视了基本计算能力的训练,似乎认为每个学生都能达到一学就会的理想境界。第二,解方程的方法不灵活。学习了三种方法之后,知道了公式法是最通用的方法,所以也就认为公式法绝对比配方法好用多了。但实际并非完全如此,通用并不意味着简单。

三、教学后的及时改进

为了解决"配方法、公式法"谁更好用?很多学生都明白公式法是在配方法上基础上的推导出来,并且有一个通用公式可算,所以学生潜意识已经认为公式法更简单

通过现场测试,很多同学又一次回到首先移项,接着只能用公式法的做法

上。其实,在这里学生让没有抓住配方法的精髓。这两题依然是可以用配方法,而且很快就可以解出来。

四、反思

1、备课应该更加务实。

在以后教学中,我要吸取这一章教学的有益经验。不仅要抓整体,更要注意一些重要细节,及时发现教学工作中可能存在的隐性问题。例如:按照惯例,对于应用题学生的难点都在于如何找等量关系和列方程,故最容易忽视的是解方程的细节。例如上文中的例4,很多学生在学习公式法之后,都会很自然将方程的左边展开,继而使用公式法,从而解方程会变得十分复杂。

2、在教学中如何能够使学生学得简单,让学生的学习热情高涨。

五、教材的独到之处

教材有很多闪光点,让人耳目一新,极大调动了学生创造热情。课本上很多应用题都来源生活,贴近学生实际,增强了学生应用数学的意识和能力。

公式法解一元二次方程的教学设计及反思2017-09-07 14:30:58 | #2楼回目录

公式法解一元二次方程的教学设计及反思

一、学情分析:本节是在学生已经掌握了配方法解一元二次方程的基础上,从问题入手,推导求根公式,并能用公式法解简单系数的一元二次方程

二、教学目标:

1、使学生熟练地应用求根公式解一元二次方程。

2、使学生经历探索求根公式的过程,培养学生抽象思维能力。

3、在探索和应用求根公式中,使学生进一步认识特殊与一般的关系,渗透辩证唯物广义观点。

三、重点难点:

1、难点:掌握一元二次方程的求根公式,并应用它熟练地解一元二次方程;

2、重点:对文字系数二次三项式进行配方;求根公式的结构比较复杂,不易记忆;系数和常数为负数时,代入求根公式常出符号错误。

四、教学过程:

一、复习旧知,提出问题

1、用配方法解下列方程:

(1)x2+15=10x(2)3x2-12x+9=0

2、用配方解一元二次方程的步骤是什么?

3、通过作业及练习深刻地体会到由配方法求方程的解有时计算起来很麻烦,每求一个一元二次方程的解,都要实施配方的步骤,进行较复杂的计算,这必然给方

程的解的正确求出带来困难能否研究出一种更好的方法,迅速求得一元二次方程的实数根呢?(产生欲望:能不能寻求一个简单的公式,快速而准确地求出方程的解是亟待解决的问题,公式法的产生极好地解决了这个问题)

二、探索求根公式

能否用配方法将一般形式的一元二次方程ax2+bx+c=0(a≠0)转化呢?

教师引导学生回顾用配方法解数字系数的一元二次方程的过程,让学生分组讨论交流,达成共识:

用配方法求一元二次方程ax2+bx+c=0(a≠0)的根

(一)一元二次方程a2+bx+c=0(a≠0)的根是由一元二次方程的系数a、b、c确定的.

(二)在解一元二次方程时,可先把方程化为一般形式,然后在b-4ac≥0的前提下,把a、b、c的值代入x=(b2-4ac≥0)中,可求得方程的两个根。过程在此略。思考:当b24ac<0时,方程有实数根吗?

三、例题

例1、解下列方程:

①2x2+x6=0;②x2+4x=2;

③5x24x12=0;④4x2+4x+10=18x

教学要点:(1)对于方程②和④,首先要把方程化为一般形式;

②强调确定a、b、c值时,不要把它们的符号弄错;2

③先计算b24ac的值,再代入公式。

小结:

公式法是解一元二次方程的通法,是配方法的延续,它实际上是配方法的一般化和程式化,利用它可以更为简捷地解一元二次方程。因为掌握求根公式的关键是掌握公式的推导过程,而掌握推导过程的关键又是掌握配方法,所以在教学中,首先引导学生自主探索一元二次方程的求根公式,然后在师生共同的讨论中,得到求根公式,并利用公式解一些简单的数字系数的一元二次方程。

教学反思:

利用求根公式解一元二次方程的一般步骤:

1.找出a,b,c的相应的数值

2.验判别式是否大于等于0

3.当判别式的数值符合条件,可以利用公式求根.

在讲解过程中,我让学生直接用公式求根,第一次接触求根公式,学生可以说非常陌生,由于过高估计学生的能力,结果出现错误较多:

1.a,b,c的符号问题出错,在方程中学生往往在找某个项的系数时总是丢掉前面的符号

2.求根公式本身就很难,形式复杂,代入数值后出错很多.

其实在做题过程中检验一下判别式着一步单独挑出来做并不麻烦,直接用公式求值也要进行,提前做着一步在到求根公式时可以把数值直接代入.在今后的教学中注意详略得当,不该省的地方一定不能省,力求收到更好的教学效果。

公式法解一元二次方程的教学设计及反思2017-09-07 14:31:16 | #3楼回目录

公式法解一元二次方程的教学设计及反思

一、学情分析:本节是在学生已经掌握了配方法解一元二次方程的基础上,从问题入手,推导求根公式,并能用公式法解简单系数的一元二次方程

二、教学目标:

1、使学生熟练地应用求根公式解一元二次方程。

2、使学生经历探索求根公式的过程,培养学生抽象思维能力。

3、在探索和应用求根公式中,使学生进一步认识特殊与一般的关系,渗透辩证唯物广义观点。

三、重点难点:

1、难点:掌握一元二次方程的求根公式,并应用它熟练地解一元二次方程;

2、重点:对文字系数二次三项式进行配方;求根公式的结构比较复杂,不易记忆;系数和常数为负数时,代入求根公式常出符号错误。

四、教学过程:

一、复习旧知,提出问题

1、用配方法解下列方程:

(1)x2+15=10x(2)3x2-12x+9=0

2、用配方解一元二次方程的步骤是什么?

3、通过作业及练习深刻地体会到由配方法求方程的解有时计算起来很麻烦,每求一个一元二次方程的解,都要实施配方的步骤,进行较复杂的计算,这必然给方

程的解的正确求出带来困难能否研究出一种更好的方法,迅速求得一元二次方程的实数根呢?(产生欲望:能不能寻求一个简单的公式,快速而准确地求出方程的解是亟待解决的问题,公式法的产生极好地解决了这个问题)

二、探索同底数幂除法法则

能否用配方法将一般形式的一元二次方程ax2+bx+c=0(a≠0)转化呢?

教师引导学生回顾用配方法解数字系数的一元二次方程的过程,让学生分组讨论交流,达成共识:

用配方法求一元二次方程ax2+bx+c=0(a≠0)的根

(一)一元二次方程a2+bx+c=0(a≠0)的根是由一元二次方程的系数a、b、c确定的.

(二)在解一元二次方程时,可先把方程化为一般形式,然后在b-4ac≥0的前提下,把a、b、c的值代入x=(b2-4ac≥0)中,可求得方程的两个根。过程在此略。思考:当b24ac<0时,方程有实数根吗?

三、例题

例1、解下列方程:

①2x2+x6=0;②x2+4x=2;

③5x24x12=0;④4x2+4x+10=18x

教学要点:(1)对于方程②和④,首先要把方程化为一般形式;

②强调确定a、b、c值时,不要把它们的符号弄错;2

③先计算b24ac的值,再代入公式。

小结:

公式法是解一元二次方程的通法,是配方法的延续,它实际上是配方法的一般化和程式化,利用它可以更为简捷地解一元二次方程。因为掌握求根公式的关键是掌握公式的推导过程,而掌握推导过程的关键又是掌握配方法,所以在教学中,首先引导学生自主探索一元二次方程的求根公式,然后在师生共同的讨论中,得到求根公式,并利用公式解一些简单的数字系数的一元二次方程。

教学反思:

利用求根公式解一元二次方程的一般步骤:

1.找出a,b,c的相应的数值

2.验判别式是否大于等于0

3.当判别式的数值符合条件,可以利用公式求根.

在讲解过程中,我让学生直接用公式求根,第一次接触求根公式,学生可以说非常陌生,由于过高估计学生的能力,结果出现错误较多:

1.a,b,c的符号问题出错,在方程中学生往往在找某个项的系数时总是丢掉前面的符号

2.求根公式本身就很难,形式复杂,代入数值后出错很多.

其实在做题过程中检验一下判别式着一步单独挑出来做并不麻烦,直接用公式求值也要进行,提前做着一步在到求根公式时可以把数值直接代入.在今后的教学中注意详略得当,不该省的地方一定不能省,力求收到更好的教学效果。

回复帖子
标题:
内容:
相关话题