二次函数教学反思2

二次函数教学反思2 | 楼主 | 2017-08-13 20:34:35 共有3个回复
  1. 1二次函数教学反思2
  2. 222.1.4二次函数y=ax2+bx+c的图象教学反思
  3. 3实际问题与二次函数教学反思2

要体现学生的最近发展区有利于学生分析,实际问题与二次函数面积问题的教学反。

二次函数教学反思22017-08-13 20:32:39 | #1楼回目录

《二次函数》教学反思

在二次函数教学中,根据它在初中数学函数在教学中的地位,细心地准备《二次函数》的教学,教学重点为二次函数的图象性质及应用,教学难点为a、b、c与二次函数的图象的关系。根据反思备课过程和讲课效果,感受颇深,有收获,也有不足。

本章的教学是我对选题有了进一步认识,要体现教学目标,要有实际意义。要体现学生的“最近发展区”,有利于学生分析。如为了帮助学生建立二次函数的概念,从学生非常熟悉的正方形的面积的研究出发,通过建立函数解析式,归纳解析式特点,给出二次函数的定义.建立了二次函数概念后,再通过三个例题的分析和解决,促进学生理解和建构二次函数的概念,在建构概念的过程中,让学生体验从问题出发到列二次函数解析式的过程.体验用函数思想去描述、研究变量之间变化规律的意义.

接下来教学主要从“抛物线的开口方向、对称轴、顶点坐标、增减性”循序渐进,由特殊到一般的学习二次函数的性质,并帮助学生总结性的去记忆。在学习过程中加强利用配方法将二次函数一般式化顶点式、判断抛物线对称轴、借图象分析函数增减性等的训练。这部分内容就是中等偏下的学生容易混淆,还需掌握方法,加强记忆,强调必须利用图形去分析。通过教学,让学生对建模思想、图形结合思想及分类讨论思想都有了较清晰的认识,学会了分析问题的初步方法。

本章中二次函数上下左右的平移是我觉得上的比较成功的一部分,主要是借助多媒体,动态的展示了二次函数的平移过程,让学生自己总结规律,很形象,便于记忆。

二次函数中含有三个字母系数,因此确定其解析式要三个独立的条件,用待定系数法来解.学习确定二次函数的一般式,即

的形式,这方面,学生的学习情况还是比较理想的,但方法没有问题,计算能力还有待加强。

在学习了二次函数的知识后,我们尝试运用于解决三个实际问题.问题1是根据实际问题建立函数解析式并学习如何确定函数的定义域;问题二是根据二

次函数的解析式,分析二次函数的性质,并通过画函数图像检验作出的分析和判断是否;问题三是综合应用一次函数、二次函数的知识确定函数的解析式和定义域,并尝试解决销售问题中最大利润的问题;通过这三个问题的分析和解决,让学生初步体会二次函数在实际生活中的运用,再次感悟数学源于生活又服务于生活。虽然有部分学生尚不能熟练解决相关应用问题,但在下面的学习中会得到补充和提高。

但在教学中,我自认为热情不够,没有积极调动学生学习热情的语言,感染力不足。今后备课时要重视创设丰富而风趣的语言,来调动学生的积极性。总之,在数学教学中不但要善于设疑置难,而且要理论联系实际,只有这样,才会吸引学生对数学学科的热爱

22.1.4二次函数y=ax2+bx+c的图象教学反思2017-08-13 20:34:10 | #2楼回目录

22.1.4二次函数y=ax+bx+c的图象教学反思

今天讲授二次函数y=ax2+bx+c的图象第1课时,首先回顾二次函数顶点式的旧知,通过回顾旧知的相关问题,使学生体会建立二次函数对称轴和顶点坐标公式的重要性,然后以例题的形式推导二次函数y=ax2+bx+c的对称轴和顶点坐标公式。在完成上述的教学内容后,结合本班的实际,主要有以下几点反思:1.一定要留足时间让学生自己作出二次函数的图象

可能在教学过程中,有些教师会觉得作图象是上一节课的重点,这一节主要是学生观察、分析图象,从而不让学生画图象或者只是简单的画一两个。这种做法看上去好像更加突出了重点、难点,却没有给学生探索与发现的过程,造成学生对于二次函数性质的理解停留在表面,知识迁移相对薄弱,不利于培养学生自主研究二次函数的能力。这将对后面的学习造成困难。所以在教学过程中,一定要留足时间,让学生一边作图,一边发现,而不是教师给出图象,让学生观察。

2.相信学生并为学生提供充分展示自己的机会

在归纳二次函数性质的时候,也要充分的相信学生,鼓励学生大胆的用自己的语言进行归纳,因为学生自己的发现远远比老师直接讲解要深刻得多。在教学过程中,要注重为学生提供展示自己聪明才智的机会,这样也利于教师发现学生分析问题解决问题的独到见解,以及思维的误区,以便指导今后的教学。课堂上要把激发学生学习热情和获得学习能力放在教学首位,通过运用各种启发、激励的语言,以及组织小组合作学习,帮助学生形成积极主动的求知态度。

3.注意改进的方面

在让学生归纳二次函数性质的时候,学生可能会归纳得比较片面或者没有找出关键点,教师一定要注意引导学生从多个角度进行考虑,而且要组织学生展开充分的讨论,把大家的观点集中考虑,这样非常有利于训练学生的归纳能力。2

实际问题与二次函数教学反思22017-08-13 20:31:52 | #3楼回目录

《实际问题与二次函数——面积问题》的教学反

思今天很高兴来上一堂《实际问题与二次函数(第1课)》的异地教学评选课,对我来说是第一次,所以上课前一直都有点担心和紧张。到三中后,学生的亲切笑容,令我所有的担心都没有了。因此这堂课在情感上我觉得是称心如意的,同时学生能很积极配合我的教学,真的很感激三中的老师和学生,令我再一次体现到当一名数学教师的喜悦!

这节课重点解决实际问题中的面积问题,我的目的是通过这节课我能解决三个问题1.建立二次函数关系式;2.用配方法或公式法求最值;3.自变量的最值范围与最值的关系。在课前我一直认为第一点不用建立坐标系不会太难,并且矩形面积对初三学生来说不会有什么问题,所以有在上课时对图形的认识这一点的分析上是欠缺的,当发现矩形的一边为x另一边很多学生表示成60-2x时,我发现学生在建函数关系式时分析图形能力比较差,所以在变式练习1、2、3我就先放手让学生写关系式,同时加强巡查及对学生的指导,然后分析学生错误给出正确遥解答。通过变式之后,学生基本能解决全闭合矩形与半闭合矩形和多边矩形的面积与过的关系,从而正确列出函数关系式。

问题2是运态问题与函数的结合,老师引导学生分析变量与线段的关系,学生很快就能建立函数关系式与求出自量取值范围0<X≤2,然后着手配方求抛物线的顶点(3,18)。得出这两个结果之后学生就激烈的争论起来了。有些学生就说“老师,不存在最值”;有些学生就说“不理它吧,就取最值为18不就行了”;有些学生就说:“取x=2时,求最值”他们的争论成为这一节课的小高潮。于是我找来一个说不存在最值的同学说理由,再由一个同学分析取x=2的理由。他说得有条有理,再加上图像结合,其余同学都一目了然。同时,为这节课画上了一个很好的句号。

回复帖子
标题:
内容:
相关话题