二次函数图象和性质的教学反思

二次函数图象和性质的教学反思 | 楼主 | 2017-08-13 20:05:41 共有3个回复
  1. 1二次函数图象和性质的教学反思
  2. 2《二次函数y=ax2+k、y=a(x-h)2的图象和性质》教学反思
  3. 3二次函数的图象与性质教学反思

二次函数图象和性质的教学反思,问题和问题是关于抛物线的最值问题,通过这条题进一步培养学生建立函数模型的思想,二次函数的图象和性质教学反思,的图象与性质的教学反思二次函数。

二次函数图象和性质的教学反思2017-08-13 20:03:54 | #1楼回目录

二次函数图象和性质的教学反思

本节课的复习目标是:①能根据已知条件确定二次函数的解析式、开口方向、顶点和对称轴。②理解并能运用二次函数的图象和性质解决有关问题。本节课的重、难点是:二次函数图象和性质的综合应用。我立足于学生自主复习,师生合作探究的形式完成本节课的教学任务。

首先我让学生课前完成二次函数图象和性质的基础训练,促使学生对二次函数图象和性质的知识点全面梳理和掌握。课上我用投影仪检查一名学生完成课前复习情况,其他学生交换批改,发现最后一小条有部分学生有问题,我及时评讲分析,帮助学生解决。

接着,师生合作探究本节课的例题。本例是用已知抛物线解决7个问题,这7个问题是我从全国2016年中考试题中整理出来的,它代表了中考的方面。问题1是用顶点式求出抛物线的解析式再通过解析式求与坐标轴的交点,通过观察图象我又提出了x为何值时,y>0,y<0?以及图中△AOC与△DCB有何关系,进一步培养学生发现问题解决问题的能力。问题2、问题3、问题4是抛物线的平移、轴对称和旋转的题目。主要是让学生抓住抛物线的顶点和开口方向来完成。这种类型的题目也有少数同学从坐标点的对称角度来解决也是可行的,并且方便记忆,对于这两种方法我让学生作了及时的归纳小结。问题5和问题6是关于抛物线的最值问题。问题5是利用抛物线的对称性解决三角形的周长最小的题目。学生通过作图能独立解决并求出点的坐标。问题6是本节课的重点,它通过建立目标函数解决四边形面积的极值。本题目关键是引导学生如何设点的坐标,将四边形的面积转化成我们熟悉的三角形(或直角梯形)来建立函数关系式。通过这条题进一步培养学生建立函数模型的思想。本题让学生充分合作交流,最后,让学生在自主探索中获取新的知识。通过观察图象求出了四边形的面积后,我又提出如何求△BCF的面积的最大值的问题,让本题得到进一步的升华,培养学生的创新思维。问题7是在抛物线上探求点存在性问题,引导学生先作出符合条件的平行四边形,再判断点是否在抛物线上,本题着重培养了学生数形结合的思想方法。

这7个问题由浅入深,循序渐进推出,符合学生的认知规律,使学生对二次函数图象和性质有了进一步的理解和提高。

本节课完成后,我感到也有不足的地方:课堂容量稍有点偏大,学生没有时间独立完成作业。虽然我对每个问题及时小结、归纳,但没有留一定时间让学生整理消化。通过这堂公开课,我受益匪浅,感受颇多,让我在如何备复习课,准确把握重点,突破难点方面有了很大的提高,同时在驾驭课堂能力方面有了很大的进步。今后我将在如何提高有效课堂效率方面多下功夫,使自己教育教学水平更上一个台阶。

《二次函数y=ax2+k、y=a(x-h)2的图象和性质》教学反思2017-08-13 20:04:16 | #2楼回目录

《二次函数y=ax+k、y=a(x-h)的图象和性质》教学反思

龙潭镇第一初级中学黄海东

在讲授了二次函数y=ax2+k、y=a(x-h)2的图象时,有点感触:

1、先诱导学生比较二次函数y=ax2+k与二次函数y=ax2在形式结构上有什么异同点,很容易发现二次函数y=ax2+k与二次函数y=ax2后多加一个k,同一个自变量值相应函数值增加或减少常数K的绝对值,即是将二次函数y=ax2图象向上/向下平移常数K的绝对值个单位长度,至于向上还是向下就取决于K的正负性。

2、比较二次函数y=a(x-h)2和二次函数y=ax2的异同点,不难发现只有平方项的底数不同而已,也就是说对于同一个函数值相应自变量由0变为h,我们清楚知道改变自变量值就相当于左/右平移,把问题实质转向看如何平移时关键是看顶点的平移,顶点如何平移那么图象就如何平移。先由解析式求出顶点坐标,再看平移的问题。如二次函数y=a(x-h)2的顶点坐标为(0,h)和二次函数y=ax2的顶点坐标为(0,0),由坐标(0,0)变成坐标(0,h)相当于把顶点从(0,0)平移到(0,h),至于左/右平移就看h的正负性,h正就往右移,相反就往左移。

通过本节课我觉得:1、要想教好数学单凭经验是远远不够的,一定要让同学动起来;2、抛物线平移问题实质就是其顶点平移问题。22

二次函数的图象与性质教学反思2017-08-13 20:03:30 | #3楼回目录

2yaxc的图象与性质的教学反思二次函数

这节课是青岛版九年级数学下册的一节探究课。在教学中我采用了体验探究的教学方式,在教师的配合引导下,让学生自己动手作图,观察、归纳出二次函数的性质,体验知识的形成过程,力求体现"主体参与、自主探索、合作交流、指导引探"的教学理念。整个教学过程主要分为三部分:第一部分是前置性作业,前置作业是前一天发给

2yax学生的,主要涉及如何作图、复习二次函数性质等问题。我的

设计目的是让学生在复习这些知识的过程中体会从函数图像来研究函数性质。应该说这样设计既让初三同学复习了旧知又使他们体会到如何研究函数,从哪些方面研究函数,从思维层面锻炼了学生的探究

2yaxc的能力。第二部分是学习探究,只要是图象让学生感受

性质以及和二次函数yax的联系与区别。第三部分是通过练习和我的展示让学生锻炼了自我学习的能力和出题的能力。本节课的优点主要包括:

1、教态自然,能注重身体语言的作用,提问具有启发性。

2、教学目标明确、思路清晰,注重学生的自我学习培养和小组合作学习的落实。

3、能运用现代化的教学手段教学,尤其是能用几何画板等软件突破重难点

4、二次函数上下左右的平移是我觉得上的比较成功的一部分,主要是借助多媒体的动态展示了二次函数的平移过程,让学生自己总结规2

律,很形象,便于记忆。

本节课的不足之处表现在:

1、目标定位不好,本节课通过画图,由图象观察总结出对称轴、顶点坐标、开口方向等。

2、课堂上讲的太多。有些过程,让学生自主观察总结是完全能收到好的效果的,但是我都替学生总结了,学生还是被动的接受。其实这还是思想的问题,说明我没有真的放开手。真正让学生有了空间,他们也会给我们很大的惊喜。

3、有些内容偏离教学大纲,导致差生吃不好,优生吃不饱。课堂上有个别同学的学习态度不尽人意。

4、备课不够细心,“图象”两个字变成“图像”。

5、课堂应急处理不够老练,同学提出的问题没有及时解答

但在教学中,我自认为热情不够,没有积极调动学生学习热情的语言,感染力不足。今后备课时要重视创设丰富而风趣的语言,来调动学生的积极性。

总之,在数学教学中不但要善于设疑置难,而且要理论联系实际,只有这样才会吸引学生对数学学科的热爱。

回复帖子
标题:
内容:
相关话题