圆的面积教学设计和反思

圆的面积教学设计和反思 | 楼主 | 2017-08-13 06:02:38 共有3个回复
  1. 1圆的面积教学设计和反思
  2. 2圆的面积教学设计和反思
  3. 3圆的面积教学设计和教学反思

三教学难点圆面积公式的推导,拿出已准备好的学具说说你把圆剪拼成了什么图形,所以圆的面积周长的一半半径,找出身边的圆同桌合作量一量半径算一算面积完成实验报告单,会利用圆的面积公式解决生活当中的实际问题。

圆的面积教学设计和反思2017-08-13 05:59:56 | #1楼回目录

圆的面积教学设计和反思

一、教学目标:

1.通过操作,引导学生推导出圆面积的计算公式,并能运用公式解答一些简单的实际问题。

2.激发学生参与整个课堂教学活动的学习兴趣,培养学生的分析、观察和概括能力,发展学生的空间观念。

3.渗透转化的数学思想和极限思想。

二、教学重点:正确计算圆的面积。

三、教学难点:圆面积公式的推导。

四、教具准备:多媒体课件,圆片。

五、学具准备:把圆片分成十六等分,并按课本图所示,剪拼并贴成近似长方形。

教学设计:

一、复习旧知,导入新课

1.前面我们学习了圆、圆的周长。如果圆的半径用r表示,周长怎样表示?(2πr)周长的一半怎样表示?(πr)

2.课件:出示一块圆形的桌布。如果要给这块桌布的边缝上花边,是求什么?(圆形桌布的周长)

3.课件:出示一块圆形的镜框。如果要镜框配一块玻璃,至少需要多大?是求什么?(圆的面积)谁能指出这个圆的面积?谁能概括一下什么是圆的面积?请同学们用手摸出学具圆的面积。

3.提问:如果圆的半径是2分米,你能猜猜这块玻璃到底有多大?(同学们纷纷地猜测,有的学生可能说这个圆面小于所在的正方形面积)

这块圆形玻璃有多大,就是要求圆形的面积,这节课我们一起来研究怎样计算圆的面积。(板书课题:圆的面积)

二、动手操作,探索新知

1.回忆平行四边形、三角形、梯形面积计算公式推导过程。

(1)以前我们学习了平行四边形、三角形和梯形的面积计算公式。请同学们回想一下,这些图形的面积计算公式是怎样推导出来的?(学生回答,师用课件演示。)

(2)通过回忆这三种平面图形面积计算公式的推导,你发现了什么?(发现这三种平面图形都是转化为学过的图形来推导出它们的面积计算公式。)

(3)能不能把圆转化为学过的图形来推导出它的面积计算公式呢?

那么同学们想一想,圆可能转化为什么平面图形来计算呢?

2.推导圆面积的计算公式。

(1)拿出已准备好的学具,说说你把圆剪拼成了什么图形?

(2)学生小组讨论。

看拼成的长方形与圆有什么联系?

学生汇报讨论结果。

(3)课件演示:请看大屏幕,把圆分成16等份,拼成了近似平行四边形,再分成32等份,拼成近似的平行四边形,再分成64等份,拼成近似长方形,你发现什么?(如果分的份数越多,每一份就会越细,拼成的图形就会越接近于长方形。)

(4)你能根据长方形的面积计算公式推导出圆的面积计算公式吗?小组讨论一下。

生边答师边演示课件。

生答:因为拼成的长方形的面积与圆的面积相等,长方形的长相当于圆周长的一半,宽相当于半径。

因为长方形的面积=长×宽

所以圆的面积=周长的一半×半径

S=πr×r

S=πr2

师小结公式S=πr2,让学生小组内说说圆的面积是怎样推导出来的?

(5)读公式并理解记忆。

(6)要求圆的面积必须知道什么?(半径)

3.利用公式计算。

(1)用新的方法算一算:刚才的玻璃到底有多大?看谁刚才猜得较接近。(学生计算并汇报)

(2)出示例3,学生尝试练习,反馈评价。

提问:如果这道题告诉的不是圆的半径,而是直径,该怎样解答?不计算,谁知道结果是多少吗?

(3)完成第95页做一做的第1题。

(4)看书质疑。

三、运用新知,解决问题

1.求下面各圆的面积,只列式不计算。(CAI课件出示)

2.测量一个圆形实物的直径,计算它的周长及面积。

3.课件演示:用一根绳子把羊栓在木桩上,演示羊边吃草边走的情景。(生看完提问题并计算)(羊吃到草的最大面积即最大圆面积是多少?)

四、全课小结

这节课你自己运用了什么方法,学到了哪些知识?

五、布置作业

1.第97页的第3题和第4题。

2.找出身边的圆,同桌合作量一量半径,算一算面积(完成实验报告单)

测量物直径(厘米)半径(厘米)面积(平方厘米)

教学反思:

“圆的面积”一课,通过让学生积极主动参与知识的形成的全过程来获取知识,提高学生的归纳、推理的数学思维能力,把学生的学习主动权还给学生,让学习的问题自然生成,我们会发现的孩子们的思维是多么广阔。在课堂中教师如果将新课程的理念转化为实际的教学行为,有时就会体会到什么叫做“无心插柳柳成荫”。

教学目标的提出有利于学生明确本节课的教学意图,激发学生学习的需要,以便更好的参与到学习活动中去。在两个班的巡讲过程中,我深刻体会到这一点,当我提出“看到课题后,你们认为这节课我们要解决什么问题呢?”学生积极发言:“想解决圆的面积如何计算;想解决圆的面积的计算公式是如何推导的;想学习怎么计算圆的面积等等”。学习目标明确后,我发现两个班的孩子在研究的时候都井然有序,没有不知道该如何入手的,都明确自己在讨论什么,要解决什么问题。汇报的的时候都知道围绕着课前所提出的学习目标回答,没有乱说的,巡讲后我从实践中体会到:教学目标是课堂教学的出发点

和最终归宿,教师只有明确教学目标才能更好的驾御课堂;学生只有明确学习目标才能积极参与,事半功倍。

2、教学形式上,应因材施教,不同的班级和学生采取不同的教学方法。

课堂中,每名学生都是我们的教育对象,不同的班级,风格、特点也不同。2班的学生比较安静,开始不十分敢发言,于是在复习以前学过的基本图形的面积推导时,我先回忆各种图形的面积推导过程,孩子们说得很好,我也大加赞赏,等他们慢慢熟悉我后,我利用小组讨论来活跃气氛,效果不错,总结时发言的同学多了起来,回答也很到位。1班的学生很活跃,思维快,都抢着举手,学生和我配合也默契。我把知识完全放手交给他们自己解决,,把所能想到的方法都用上了:讨论、自学、猜想。学生们都能积极参与,汇报时公式的推导过程说的很完整,练习题计算起来也不费劲。应该说98班是巡讲中讲的最理想的班级。

在整个巡讲教学过程中,我发挥了教师的主导作用,突出了学生的主体地位,引导学生主动探究、研究,获取解决问题的各种方法,为学生提供充足的时间、空间、材料,教学围绕学生的学习活动展开。抓住宝贵时机引导学生理解新方法,使新知识迎刃而解。两个班讲下来我最大的收获是教学中的应变能力提高了,不同的学生给了我不同的体会。当然也发现了自己的不足:还是不敢放手把主动权交给学生,即使放手了也牵着一点,这是在今后的的工作中应继续改进的地方;在提出一个问题后应给予学生一定的思考时间,不要过急。

在今后的教学中我会深深记住这次巡讲,继续改进自己的教学水平。

圆的面积教学设计和反思2017-08-13 06:00:09 | #2楼回目录

圆的面积教学设计

一、教学目标:

1、知识与技能

(1)知道圆的面积公式推导过程;

(2)会用圆的面积公式计算圆的面积;

(3)会利用圆的面积公式解决生活当中的实际问题。

2、过程与方法

经历动手操作讨论等探索圆的面积公式的过程;

3、情感态度与价值观

积极参加数学活动,体验圆的面积公式推导的探索性和挑战性,感受公式的确定性和转化的数学思想。

二、教学重点:圆的面积的计算;

三、教学难点:

1、推导圆的公式的过程;

2、教具准备:多媒体课件、圆片、胶水、剪刀

四、教学过程:

1、复习面积概念。

2、复习以前学过的平面图形的面积公式。

3、拿出事先准备好的圆形学具,摸一摸,指一指,感受圆的周长和面积。

4、设疑:那么圆的面积怎样求呢?

5、教师让学生说出以前学过的平行四边行图形的面积公式是怎么的来的?然后复习演示平行四边行的公式推导过程。

6、要求圆的面积,怎样把圆形转化成以前学过的图形呢?

(1)、设疑导入,激起学生学习的兴趣.

(2)、复习渗透转化的思想,为推导圆的面积埋下伏笔.(二)合作探究

1把圆形转化成以前学过的图形探究圆的面积公式师:同学们开动脑筋,小组合作看能把圆转化成什么图形?

(1)学生动手操作;

(2)交流演示各组拼出的图形。

(3)教师用课件演示。

教师用课件演示长方形的长与宽和圆的周长与半径的关系.得出圆的面积公式S=πr

问:那么要求圆的面积必须知道什么条件?

(三)解决问题

1、已知圆的半径,求圆的面积

例:一个圆形花坛的半径是3m,它的面积是多少平方米?

2、已知圆的直径,求圆的面积

例:圆形花坛的直径的20m,它的面积是多少平方米?

3、已知圆的周长,求圆的面积

例:一个圆形储水池的周长是25.12m,它的占地面积是多少平方米?

四巩固练习:

1、判断对错:

(1)直径相等的两个圆,面积不一定相等。。

(2)两个圆的周长相等,面积也一定相等。

(3)圆的半径越大,圆所占的面积也越大。

五、知识拓展

六、总结:学生谈收获

()(())

圆的面积教学设计和教学反思2017-08-13 06:00:17 | #3楼回目录

圆的面积教学设计和教学反思

一、创设情境,导入新课。

课件演示:1、让学生想一想自动喷水装置喷水范围应该有多大呢?是什么形状?

2、现在你想提什么数学问题?

揭示课题:圆的面积

二、师生互动,推导公式。

1、认识圆的面积

a、什么是圆的面积呢?

b、出示一个圆片:圆的面积在哪里?请同学们拿出圆片,用手摸一摸,感受一下圆的面积,你想说什么?

c、圆的大小主要与哪些因素有关?(半径、直径、周长)

出示结语:圆所占平面的大小叫做圆的面积

2、回忆一下:我们以前学平行四边形、三角形、梯形的面积计算公式时都是用什么方法推导出来的?(引导转化)

三、生生互动,推导公式

圆可转化为哪一个学过的图形呢?小组可以折一折、画一画、剪一剪、拼一拼,试试看!

1、小组讨论:设计方案,并汇报。

a、让学生拿出卡纸(1),观察卡纸(1)上的圆被分成多少等分,圆被转化成什么图形呢?

b、让学生拿出卡纸(2),观察卡纸(2)上的圆被分成多少等分,圆又被转化成什么图形呢?

那么,有没有什么办法让它的边变得更直呢?再剪几份,你是说把它分得更多份些,是吗?(可以把它分得更多份些)

c、请拿出手中的圆片试着折一折,展开来,看看你折成了几等份?如果再折下去可以吗?现在就把你们折的这几种方案。(八等份、十六等份、三十二等份)

d、观察这三种分法,比较一下,同样大小的圆平均分的份数不同,拼出来的图形有什么变化?

发现:平均分的份数越多,拼成的图形越接近长方形。

e、转化成长方形,推导圆的面积公式。

动手实践:沿着半径把圆切开,巧妙地把圆拼成了近似的长方形,现在我们可以利用长方形的面积公式来推导圆的面积公式。小组合作探究,动手摆一摆,边观察、边讨论、边推导,看哪组表现最好。

展现以下问题:(1)长方形的长相当于圆的()?(2)长方形的宽相当于圆的()?

(3)长方形的面积相当于圆的()?(4)因为长方形的面积=()所以圆的面积=()。

2、小组讨论后,并演示公式推导的全过程。

3、揭示字母公式()。

小结:可见要求圆的面积只要知道什么就行?(半径)

四、练习巩固

1、运用公式学习例1。

学生试做,说理由,归纳总结。

2、完成基本练习(做一做)

五、解决问题

解决课件问题。

六、课堂总结

1、这节课我们发现了什么、学会了什么?

2、希望同学们在今后的学习中更好地运用好转化的方法去学习更多的数学知识。

七、课外作业

练习十六的1~3题

《圆的面积》教学反思

本节课充分体现了教为主导,学为主体的探究性自主学习与小组合作学习相结合的教学思想。并在师生互动、生生互动中去完成教学任务。由于学生已经有了探究三角形、平行四边形、梯形面积公式的经验。本课一开始我就鼓励学生回忆以前是如何研究平面图形的面积的呢?现在又如何探究圆的面积呢?刚开始学生有点不知所措。但现在回想起来,应该先我让学生猜测圆的面积可能与什么有关。当学生猜测出圆的面积可能与圆的半径有关系时,这样的引入可能能让学生解答出我的问题。其次再通过把圆从8等份、16等份、32等份分圆再把圆片拼起来,从一个不规则图形,到近似是的一个长方形。再让学生从这个长方形中找到圆的周长,从8等份拼成的不规则图形到32图形拼成的近似一个长方形,从中得出规律。最后得到长方形的长就等于打下基矗

圆的周长的一半,而它的宽就是圆的半径,可能得到长方形的面积可能近似地看作圆的面积。最终推导出圆的面积公式。让学生知道新的问题可以转化成旧的知识,并利用旧的知识解决新的问题。经过这样的抽象和概括出问题的本质,因为知识的本身并不重要,重要的是数学思想的方法,那才是数学的精髓。然后让生生互动,再根据自己的发现,小组合作,动手探究把圆转化成学过的平面图形。并通过这个环节来加深对新知识的巩固。在这一节课里我觉得学生学得很主动,由于大胆放手让学生运用以有的知识经验去解决新问题,学生感受到了成功的喜悦。同时我也觉得在新课改的理念下我们把学习的主阵地还给学生,学生的各方面能力得到了很大的提高。通过对圆有关知识学习,不仅加深学生对周围事物的理解,激发学习数学的兴趣,也为以后学习圆柱,圆锥和绘制简单的统计图

回复帖子
标题:
内容:
相关话题